(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,
,
,且面试是否合格互不影响.求:
(Ⅰ)至少有1人面试合格的概率;
(Ⅱ)签约人数的分布列和数学期望.
已知,
,且向量
与
不共线.
(1)若与
的夹角为
,求
·
;
(2)若向量与
互相垂直,求
的值.
在中,内角
所对的边分别是
.已知
,
,
.
(1)求的值;
(2)求的面积.
已知函数.
(1)求(x)的最小正周期和单调递增区间;
(2)求f(x)在区间上的最大值和最小值.
(本小题满分10分)选修4-4:极坐标与参数方程选讲
已知曲线的极坐标方程是
,直线
的参数方程是
(
为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)设直线与
轴的交点是
,
是曲线
上一动点,求
的最大值.
(本小题满分10分)选修4-1几何证明选讲
已知外接圆劣弧
上的点(不与点
、
重合),延长
至
,延长
交
的延长线于
.
(Ⅰ)求证:;
(Ⅱ)求证:.