甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.
乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.
问:购买该商品的顾客在哪家商场中奖的可能性大?
已知集合A=,集合B=
。
当=2时,求
;
当时,若元素
是
的必要条件,求实数
的取值范围。
(本小题满分12分)四棱锥中,底面
为矩形,侧面
底面
,
,
,
.
(Ⅰ)证明:;
(Ⅱ)设与平面
所成的角为
,
求二面角的余弦值.
(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=
=λ (0<λ<1).
(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时?平面BEF⊥平面ACD.
(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
(本小题满分12分)如图,在中,
是
上的高,沿
把
折起,使
。
(Ⅰ)证明:平面ADB⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。