如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为1cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=cm,AD=2cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为2cm/s,矩形ABCD的移动速度为3cm/s,设移动时间为t(s).
(1)如图①,连接OA、AC,则∠OAC的度数为 °;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<1时,求t的取值范围(解答时可以利用备用图画出相关示意图).
如图,AO是△ABC的中线,⊙O与AB相切于点D.
(1)要使⊙O与AC边也相切,应增加条件_________.
(2)增加条件后,请你证明⊙O与AC相切.
用适当的方法解方程:
当,求代数式
的值.
如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,
(1)直角梯形ABCD的面积为cm2.
(2)当t= 秒时,四边形PQCD成为平行四边形?
(3)当t= 秒时,AQ=DC;
(4)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值,若不存在,说明理由.
如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别是折痕CE与AB、AG与CD的交点.
(1)试说明四边形AECG是平行四边形;
(2)若矩形的一边AB的长为3cm,当BC的长为多少时,四边形AECG是菱形?