对于数列,如果存在一个正整数
,使得对任意的
(
)都有
成立,那么数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,以下简称周期。
(1)已知数列的通项公式是
,判断数列
是否是周期数列?并说明理由;
(2)设数列满足
(
),
,
,且数列
是周期为
的周期数列,求常数
的值;
(3)设数列满足
,
(其中
是常数),
(
),求数列
的前
项和
。
已知向量,
,函数
。
(Ⅰ)求函数的值域;
(Ⅱ)当,且
时,求
的值
已知过点的动直线
与圆
:
相交于
、
两点,
与
直线:
相交于
.
(1)求证:当与
垂直时,
必过圆心
;
(2)当时,求直线
的方程.
已知中心在原点、焦点在x轴的椭圆的离心率为,且过点(
,
).
(Ⅰ)求椭圆E的方程;
(Ⅱ)若A,B是椭圆E的左、右顶点,直线:
(
)与椭圆E交于
、
两点,证明直线
与直线
的交点在垂直于
轴的定直线上,并求出该直线方程.
等差数列中,
,
;数列
的前
项和是
,且
.
(Ⅰ) 求数列的通项公式;
(Ⅱ) 求证:数列是等比数列;
(Ⅲ) 记,求
的前n项和
.
数列中,已知
,且
是1与
的等差中项.
(Ⅰ)求;
(Ⅱ)设,记数列
的前
项和为
,证明: