某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一关奖励40慧币;第二种,闯过第一关奖励4慧币,以后每一关比前一关多奖励4慧币;第三种,闯过第一关奖励0.5 慧币,以后每一关比前一关奖励翻一番(即增加1倍),游戏规定:闯关者须于闯关前任选一种奖励方案.
(Ⅰ)设闯过n (n∈N,且n≤12)关后三种奖励方案获得的慧币依次为,
,
,试求出An,
,
的表达式;
(Ⅱ)如果你是一名闯关者,为了得到更多的慧币,你应如何选择奖励方案?
已知函数,
(1)求函数f (x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C的对应边分别为、b、c,且
,若向量
共线,求
、b的值;
已知,
,
,
.
(1)若,求
;
(2)求的取值范围;
(本题满分12分,每小题6分)
(1)若为基底向量,且
若A、B、D三点共线,求实数k的值;
(2)用“五点作图法”在已给坐标系中画出函数一个周期内的简图,并指出该函数图象是由函数
的图象进行怎样的变换而得到的?
(本小题满分14分)设函数。
(1)若在
处取得极值,求
的值;
(2)若在定义域内为增函数,求
的取值范围;
(3)设,当
时,
求证:① 在其定义域内恒成立;
求证:② 。
(本小题满分13分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求的值及
的表达式;
(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值.