某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一关奖励40慧币;第二种,闯过第一关奖励4慧币,以后每一关比前一关多奖励4慧币;第三种,闯过第一关奖励0.5 慧币,以后每一关比前一关奖励翻一番(即增加1倍),游戏规定:闯关者须于闯关前任选一种奖励方案.
(Ⅰ)设闯过n (n∈N,且n≤12)关后三种奖励方案获得的慧币依次为,
,
,试求出An,
,
的表达式;
(Ⅱ)如果你是一名闯关者,为了得到更多的慧币,你应如何选择奖励方案?
设函数(
),
.
(1)若函数在定义域内单调递减,求实数
的取值范围;
(2)若对任意,都有唯一的
,使得
成立,求实数
的取值范围.
已知直线,半径为
的圆
与
相切,圆心
在
轴上且在直线
的右上方.
(1)求圆的方程;
(2)过点的直线与圆
交于
,
两点(
在
轴上方),问在
轴正半轴上是否存在定点
,使得
轴平分
?若存在,请求出点
的坐标;若不存在,请说明理由.
如图,在直角梯形中,
,
,且
.现以
为一边向梯形外作矩形
,然后沿边
将矩形
翻折,使平面
与平面
垂直.
(1)求证:平面
;
(2)若点到平面
的距离为
,求三棱锥
的体积.
已知等比数列满足
,且
是
,
的等差数列.
(1)求数列的通项公式;
(2)若,
,求使
成立的
的最小值.
年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔
辆就抽取一辆的抽样方法抽取
名驾驶员进行询问调查,将他们在某段高速公路的车速(
/
)分成六段:
,
,
,
,
,
后得到如图的频率分布直方图.
(1)求这辆小型车辆车速的众数和中位数的估计值;
(2)若从车速在的车辆中任抽取
辆,求车速在
的车辆恰有一辆的概率.