游客
题文

已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)若函数求函数的最小值;
(3)设表示数列的前项和.试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知
(1)求的最小值
(2)由(1)推出的最小值C
(不必写出推理过程,只要求写出结果)
(3)在(2)的条件下,已知函数若对于任意的,恒有成立,求的取值范围.

已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:



4

1

2
4

2

(1)求的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,

(i) 求的最值.
(ii) 求四边形ABCD的面积;

已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,(1)求的通项公式.(2)记数列的前三项和为,求证:

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。

每一个父母都希望自己的孩子能升上比较理想的中学,于是就催生了“择校热”,这样“择校”的结果就导致了学生在路上耽误的时间增加了.若某生由于种种原因,每天只能6:15骑车从家出发到学校,途经5个路口,这5个路口将家到学校分成了6个路段,每个路段的骑车时间是10分钟(通过路口的时间忽略不计),假定他在每个路口遇见红灯的概率均为,且该生只在遇到红灯或到达学校才停车.对每个路口遇见红灯的情况统计如下:

红灯
1
2
3
4
5
等待时间(秒)
60
60
90
30
90

(1)设学校规定7:20后(含7:20)到校即为迟到,求这名学生迟到的概率;
(2)设表示该学生第一次停车时已经通过的路口数,求它的分布列与期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号