(本小题12分)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 |
[50,60) |
[60,70) |
[70,80) |
[80,90) |
x∶y |
1∶1 |
2∶1 |
3∶4 |
4∶5 |
如图所示,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,
求△BCF外接圆的半径.
已知函数.
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
处取得极值,对
,
恒成立,求实数
的取值范围;
(3)当且
时,试比较
的大小
(本小题满分12分)
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切,过点
且不垂直于
轴的直线
与椭圆
相交于
、
两点.
(1)求椭圆的方程;
(2)求的取值范围;
(3)若点关于
轴的对称点是
,证明:直线
与
轴相交于定点.
如图, 四棱柱ABCD-A1B1C1D1中, 侧棱A1A⊥底面ABCD, AB//DC, AB⊥AD, AD =" CD" =" 1," AA1 =" AB" =" 2," E为棱AA1的中点.
(1) 证明B1C1⊥CE;
(2) 求二面角B1-CE-C1的正弦值.
(3) 设点M在线段C1E上, 且直线AM与平面ADD1A1所成角的正弦值为, 求线段AM的长.
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查得到了如下的列联表:
患心肺疾病 |
不患心肺疾病 |
合计 |
|
男 |
5 |
||
女 |
10 |
||
合计 |
50 |
已知在调查的50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整;
(2)是否有的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,抽取3名进行其他方面的排查,记抽取患胃病的女性人数为,求
的分布列,数学期望以及方差;大气污染会引起各种疾病,试浅谈日常生活中如何减少大气污染.
下面的临界值表供参考:
(参考公式其中
)