(本题12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
.(本小题满分14分)
如图7,在直三棱柱中,
,
分别是
的中点,
是
的中点.
(1)求证:;(2)求三棱锥
的体积;(3)求二面角
的余弦值.
(本小题满分12分)
我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,为此市政府首先采用抽样调查的方法获得了位居民某年的月均用水量(单位:吨).根据所得的
个数据按照区间
进行分组,得到频率分布直方图如图
(1)若已知位居民中月均用水量小于1吨的人数是12,求
位居民中月均用水量分别在区间
和
内的人数;
(2)在该市居民中随意抽取10位,求至少有2位居民月均用水量在区间或
内的概率.(精确到0.01.参考数据:
)
在锐角三角形中,BC=1,
,
.
(1)求的值;
(2)求的值.
(本小题满分14分)已知函数
(I)求的最小值;
(II)讨论关于x的方程的解的个数;
(III)当
(本小题满分13分)椭圆C的中心为坐标原点O,焦点在y轴上,短轴长为、离心率为
,直线
与y轴交于点P(0,
),与
椭圆C交于相异两点A、B,且
。
(I)求椭圆方程;
(II)求的取值范围。