季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.
(Ⅰ)试建立价格P与周次t之间的函数关系式;
(Ⅱ)若此服装每件进价Q与周次t之间的关系为,
,
,试问该服装第几周每件销售利润最大,最大值是多少?
(注:每件销售利润=售价-进价)
(本题满分14分)
某企业准备投资1200万元兴办一所中学,对当地教育市场进行调查后,得到了如下的数据表格(以班级为单位):
学段 |
硬件建设(万元) |
配备教师数 |
教师年薪(万元) |
初中 |
26 / 班 |
2 / 班 |
2 / 人 |
高中 |
54 / 班 |
3 / 班 |
2 / 人 |
因生源和环境等因素,全校总班级至少20个班,至多30个班。
(Ⅰ)请用数学关系式表示上述的限制条件;(设开设初中班x个,高中班y个)
(Ⅱ)若每开设一个初、高中班,可分别获得年利润2万元、3万元,请你合理规划办学规模使年利润最大,最大为多少?
的三边,其面积
,角A为锐角
(Ⅰ) 求角A;
(Ⅱ)已知b+c=14,求边长a.
已知不等式的解集是A,不等式
的解集是B,若不等式
的解集是
,则:
(1)求 A, B,;
(2)求。
在△中,若
,
,
,则
____ ____.
(本小题10分)如图直线过点(3,4), 与
轴、
轴的正半轴分别交于A、B两点,△ABC的面积为24. 点
为线段
上一动点,且
交
于点
.
(Ⅰ)求直线斜率的大小;
(Ⅱ)若时,请你确定
点在
上的位置,并求出线段
的长;
(Ⅲ)在轴上是否存在点
,使△
为等腰直角三角形,若存在,求出点
的坐标;若不存在,说明理由.