(本小题满分12分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体
1000名学生中随机抽取了若干名学生的体检表,并得到如下直方图:
(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的
人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有
关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
年级名次 是否近视 |
1~50 |
951~1000 |
近视 |
41 |
32 |
不近视 |
9 |
18 |
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良
好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为,求
的分布列和数学期
望.
附:
P(K2≥k) |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
(本小题满分12分)
已知定义在R上的函数的图像关于原点对称,且x=1
时,f(x)取极小值
.
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[-1,1]时,图像上是否存在两点,使得在此两点处的切线互相垂直?证明你的结论.
(本小题满分12分)
设数列为等差数列,且
,
,数列
的前
项和为
,
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列
的前
项和
.
(本小题满分12分)
如图所示,在正三棱柱中,底面边长为
,侧棱长为
,
是棱
的中点.
|
(Ⅰ)求证:平面
;
(本小题满分12分)
将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体
(Ⅰ)从这些小正方体中任取1个,求其中至少有两面涂有颜色的概率;
(Ⅱ)从中任取2个小正方体,求2个小正方体涂上颜色的面数之和为4的概率。
(本小题满分10分)
已知向量,
,函数
(Ⅰ)求的单调增区间;
(Ⅱ)若时,
的最大值为4,求
的值.