(本小题满分13分)已知等差数列的公差为
,首项为正数,将数列
的前
项抽去其中一项后,剩下三项按原来顺序恰为等比数列
的前3项,
(1)求数列的通项公式
与前
项和
;
(2)是否存在三个不等正整数,使
成等差数列且
成等比数列.
(本小题满分12分)在多面体中,
,
,
平面
,
,
为
的中点.
(1)求证:平面
;
(2)若,求二面角
的正切值的大小.
(本小题满分12分)已知数列满足
,
,
.猜想数列
的单调性,并证明你的结论.
(本小题满分12分)已知分别在射线
(不含端点
)上运动,
,在
中,角
、
、
所对的边分别是
、
、
.
(1)若、
、
依次成等差数列,且公差为2.求
的值;
(2)若,
,试用
表示
的周长,并求周长的最大值.
(本小题满分14分)已知函数
(1)求的单调区间和极值;
(2)设,若
在
上不单调且仅在
处取得最大值,求
的取值范围;
(3)当时,探究当
时,函数
的图像与函数
图像之间的关系,并证明你的结论.