(本小题满分8分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;
(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形;
(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
某公司生产一种环保产品,需要添加一种新型原料,若每件产品的利润与新型原料价格成一次函数关系,且每件产品的利润y(元)与新型原料的价格x(元/千克)的函数图象如图:
(1)当新型原料的价格为600元/千克时,每件产品的利润是多少?
(2)新型原料是一种稀少材料,为了珍惜资源,政府部门规定:新型原料每天使用量m(千克)与价格x(元/千克)的函数关系为x ="10m" +500,且m千克新型原料可生产10m件产品.那么生产300件这种产品,一共可得利润是多少?
(3)受生产能力的限制,该公司每天生产这种产品不超过450件,那么在(2)的条件下,该公司每天应生产多少件产品才能获得最大利润?最大利润是多少?
如图,一次函数与反比例函数
的图象交于A(1,m)、B(4,n)两点.
(1)求A、B两点的坐标和反比例函数的解析式;
(2)根据图象,直接写出当y>y
时x的取值范围;
(3)求△AOB的面积.
如图所示,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C(0,2),若∠ACB=90°,BC=.
试求:(1)A、B两点的坐标;
(2)二次函数的表达式.
李华晚上在两站相距50m的路灯下来回散步,DF=50m.已知李华身高AB=1.7m,灯柱CD=EF=8.5m.
(1)若李华距灯柱CD的距离为DB=xm,他的影子BQ=ym,求y关于x的函数关系式.
(2)若李华在两路灯之间行走,则他前后两个影子PB+BQ是否会发生变化?请说明理由.
如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约2.5m.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据图示的直角坐标系信息,请你算出该运动员的成绩.(即求OB的长度)