如图,边长为4cm的等边三角形ABC与⊙O等高(即高与直径相等),⊙O与BC相切于点C,⊙O与AC相交于点E.
求:(1)CE的长;
(2)阴影部分的面积.
如图,点A、B、C在⊙O上,已知:AC∥OB.
(1)直接写出图中等于的角;
(2)如果∠B=25°,求∠AOC的大小.
平面直角坐标系中,如图,将个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C。
(1)当n=1时,如果a=-1,试求b的值。
(2)当n=2时,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式。
(3)当n=3时,将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O,求a的值。
如图,以矩形ABCD的对角线AC的中点O为圆心、OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K,过点D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H。
(1)求证:AE=CK
(2)若AB=a,AD=a(a为常数),求BK的长(用含a的代数式表示)。
(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长。
据统计,2013年某地区建筑商出售商品房后的利润率(即利润除以成本)为25%。
(1)2013年该地区一套总售价为60万元的商品房,成本是多少?
(2)2014年第一季度,该地区商品房每平方米价格上涨了2a元,每平方米成本仅上涨了a元,这样60万元所能购买的商品房的面积比2013年减少了20平方米,建筑商的利润率达到三分之一。求2014年该地区建筑商出售的商品房每平方米的利润。