某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1)如果多种5棵橙子树,计算每棵橙子树的产量;
(2)如果果园橙子的总产量要达到60375个,考虑到既要成本低,又要保证树与树间的距离不能过密,那么应该多种多少棵橙子树?
(3)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?
关于的二元一次方程组
的解满足
,求
的取值范围。
先化简代数式,然后选取一个使原式有意义的
的值代入求值。
计算
1) 2)
3) 4)
解下列不等式(组),并把解集表示在数轴上
1)2)
3)
4)
如图已知二次函数图象的顶点为原点, 直线的图象与该二次函数的图象交于
点(8,8),直线与
轴的交点为C,与y轴的交点为B.
(1)求这个二次函数的解析式与B点坐标;
(2)为线段
上的一个动点(点
与
不重合),过
作
轴的垂线与这个二次函数的图象交于D点,与
轴交于点E.设线段PD的长为
,点
的横坐标为t,求
与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段上是否存在点
,使得以点P、D、B为顶点的三角形与
相似?若存在,请求出
点的坐标;若不存在,请说明理由.