已知,
(其中
),函数
,若直线
是函数
图象的一条对称轴.
(Ⅰ)试求的值;
(Ⅱ)若函数的图象是由
的图象的各点的横坐标伸长到原来的2倍,然后再向左平移
个单位长度得到,求
的单调递增区间.
如图,已知椭圆C: 的左、右焦点分别为
,离心率为
,点A是椭圆上任一点,
的周长为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点任作一动直线l交椭圆C于
两点,记
,若在线段
上取一点R,使得
,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.
设函数.
(Ⅰ)求的单调区间;
(Ⅱ)若,且
在区间
内存在极值,求整数
的值.
某高校组织的自主招生考试,共有1000名同学参加笔试,成绩均介于60分到100分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分为4组:第1组[60,70),第2组[70,80),第3组[80,90),第4组[90,100].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在85分(含85分)以上的同学有面试资格.
(Ⅰ)估计所有参加笔试的1000名同学中,有面试资格的人数;
(Ⅱ)已知某中学有甲、乙两位同学取得面试资格,且甲的笔试比乙的高;面试时,要求每人回答两个问题,假设甲、乙两人对每一个问题答对的概率均为;若甲答对题的个数不少于乙,则甲比乙优先获得高考加分资格.求甲比乙优先获得高考加分资格的概率.
如图,平面
凸多面体
的体积为
,
为
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面平面
.