某高校组织的自主招生考试,共有1000名同学参加笔试,成绩均介于60分到100分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分为4组:第1组[60,70),第2组[70,80),第3组[80,90),第4组[90,100].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在85分(含85分)以上的同学有面试资格.
(Ⅰ)估计所有参加笔试的1000名同学中,有面试资格的人数;
(Ⅱ)已知某中学有甲、乙两位同学取得面试资格,且甲的笔试比乙的高;面试时,要求每人回答两个问题,假设甲、乙两人对每一个问题答对的概率均为;若甲答对题的个数不少于乙,则甲比乙优先获得高考加分资格.求甲比乙优先获得高考加分资格的概率.
(本小题满分12分)
设向量,其中
.
(1)求的取值范围;
(2)若函数的大小
(本小题满分12分)
如图,函数y=2sin(πx+φ),x∈R,(其中0≤φ≤)的图象与y轴交于点(0,1)。 (1)求φ的值;(2)若
,求函数y=2sin(πx+φ)的最值,及取得最值时
的值;(3)设P是图象上的最高点,M、N是图象与x轴的交点,求
的余弦值。
(本小题满分12分)
对某电子元件进行寿命追踪调查,情况如下:
寿命/小时 |
100~200 |
200~300 |
300~400 |
400~500 |
500~600 |
个数 |
20 |
30 |
80 |
40 |
30 |
(1)完成频率分布表;
分组 |
频数 |
频率 |
100~200 |
||
200~300 |
||
300~400 |
||
400~500 |
||
500~600 |
||
合计 |
(2)画出频率分布直方图和频率分布折线图;
(3)估计电子元件寿命在100~400小时以内的频率;
(本小题满分10分)
有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用表示结果,其中
表示投掷第1颗正四面体玩具落在底面的数字,
表示投掷第2颗正四面体玩具落在底面的数字。
(1)写出试验的基本事件;
(2)求事件“落在底面的数字之和大于3”的概率;
(3)求事件“落在底面的数字相等”的概率。
(本小题满分12分)
在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线(记作MA)的变化情况来决定买入或卖出股票。股民老赵在研究股票的走势图时,发现一只股票的MA均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xoy,则股价y(元)和时间x的关系在ABC段可近似地用解析式
来描述,从C点走到今天的D点,是震荡筑底阶段,而今
天出现了明显的
筑底结束的标志,且D点和C
点正
好关于直线
对称。老赵预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线
对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F。现在老赵决定取点
,点
,点
来确定解析式中的常数
,并且已经求得
。
(1)请你帮老赵算出,并回答股价什么时候见顶(即求F点的横坐标);
(2)老赵如能在今天以D点处的价格买入该股票5000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?