在平面直角坐标系中,点M(
,
),以点M为圆心,OM长为半径作⊙M .使⊙M与直线OM的另一交点为点B,与
轴、
轴的另一交点分别为点D、A(如图),连接AM.点P是
上的动点.
(1)∠AOB的度数为 .
(2)Q是射线OP上的点,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E.
①当QE与⊙M相切时,求点E的坐标;
②在①的条件下,在点P运动的整个过程中,求△ODQ面积的最大值及点Q经过的路径长.
已知关于的方程组
的解满足不等式
,求实数
的取值范围。
.如图10,在直角△ABC中,∠C=90
,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数。
如图11, 、 分别是矩形 的对角线 和 上的点,且 。求证:
(11·钦州).
如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C (0,4),顶点为.
(1)求抛物线的函数表达式;
(2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件的所有点P的坐标.
(3)若点E是线段AB上的一个动点(与A、B不重合),分别连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,求出S的最大值及此时E点的坐标;若不存在,请说明理由.
(11·钦州)
如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.
(1)求证:AC平分∠DAB;
(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);
(3)若CD=4,AC=4,求垂线段OE的长.