已知动圆P过点F且与直线y=
相切.
(1)求圆心P的轨迹C的方程;
(2)过点F作一条直线交轨迹C于A,B两点,轨迹C在A,B两点处的切线相交于N,M为线段AB的中点,求证:MN⊥x轴.
(本小题满分10分)选修4—1:几何证明选讲
如图所示,为圆
的切线,
为切点,
,
的角平分线与
和圆
分别交于点
和
.
(1)求证
(2)求的值.
(本小题满分12分)已知函数
(1)当时,求
的单调递减区间;
(2)若当时,
恒成立,求
的取值范围;
(3)求证:
已知椭圆的对称中心为原点
,焦点在
轴上,左右焦点分别为
和
,且
,点
在该椭圆上.
(1)求椭圆的方程;
(2)过的直线
与椭圆
相交于
两点,若
的面积为
,求以
为圆心且与直线
相切圆的方程.
己知斜三棱柱的底面是边长为
的正三角形,侧面
为菱形,
,平面
平面
,
是
的中点.
(1)求证:;
(2)求二面角的余弦值.
(本小题满分12分)甲乙两人进行围棋比赛,约定每局胜者得1分,负者得分,比赛进行到有一人比对方多
分或打满
局时停止.设甲在每局中获胜的概率
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
.
(1)求的值;
(2)设表示比赛停止时已比赛的局数,求随机变量
的分布列和数学期望
.