(本题10分)在平面直角坐标系中,已知抛物线
:
,在此抛物线上一点N
到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线的准线与
轴交于
点,过
点斜率为
的直线
与抛物线
交于
、
两点.是否存在这样的
,使得抛物线
上总存在点
满足
,若存在,求
的取值范围;若不存在,说明理由.
已知,函数
,在
是一个单调函数。
(1)试问在
的条件下,在
能否是单调递减函数?说明理由。
(2)若在
上是单调递增函数,求实数a的取值范围。
(3)设且
,比较
与
的大小。
已知函数(其中
)的图象与x轴在原点右侧的第一个交点为N(6,0),又
(1)求这个函数解析式
(2)设关于x的方程在[0,8]内有两个不同根
,求
的值及k的取值范围。
设排球队A与B进行比赛,规定若有一队胜四场,则为获胜队,已知两队水平相当
(1)求A队第一、五场输,第二、三、四场赢,最终获胜的概率;
(2)若要决出胜负,平均需要比赛几场?
(1)解关于x的不等式
(2)记a>0时(1)中不等式的解集为A,集合B=,若
恰有3个元素,求a的取值范围。
设,
(1)若,
为
与
的夹角,求
。
(2)若与
夹角为60o,那么t为何值时
的值最小?