(本小题满分12分)某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.
(1)问各班被抽取的学生人数各为多少人?
(2)求平均成绩;
(3)在抽取的所有学生中,任取一名学生,
求分数不小于90分的概率.
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
(文)某种型号汽车的四个轮胎半径相同,均为,该车的底盘与轮胎中心在同一水平面上. 该车的涉水安全要求是:水面不能超过它的底盘高度. 如图所示:某处有一“坑形”地面,其中坑
形成顶角为
的等腰三角形,且
,如果地面上有
(
)高的积水(此时坑内全是水,其它因素忽略不计).
(1)当轮胎与、
同时接触时,求证:此轮胎露在水面外的高度(从轮胎最上部到水面的距离)为
;
(2) 假定该汽车能顺利通过这个坑(指汽车在过此坑时,符合涉水安全要求),求的最大值.
(精确到1cm).
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=
.
(1)判断函数的奇偶性,并证明;
(2)求的反函数
,并求使得函数
有零点的实数
的取值范围.
(本题满分12分)
已知集合,实数
使得集合
满足
,
求的取值范围.
如果函数的定义域为
,对于定义域内的任意
,存在实数
使得
成立,则称此函数具有“
性质”.
(1)判断函数是否具有“
性质”,若具有“
性质”求出所有
的值;若不具有“
性质”,请说明理由.
(2)已知具有“
性质”,且当
时
,求
在
上的最大值.
(3)设函数具有“
性质”,且当
时,
.若
与
交点个数为2013个,求
的值.
数列的前
项和记为
,且满足
.
(1)求数列的通项公式;
(2)求和;
(3)设有项的数列
是连续的正整数数列,并且满足:
.
问数列最多有几项?并求这些项的和.