(本小题满分16分)
(1)求右焦点坐标是,且经过点
的椭圆的标准方程.
(2)已知椭圆,设斜率为
的直线
交椭圆
于
两点,
的中点为
,证明:当直线
平行移动时,动点
在一条过原点的定直线上.
(3)利用(2)中所揭示的椭圆几何性质,用作图方法找出图中的定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.
设函数f(x)=-
sin2ωx-sinωxcosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为
.
(1)求ω的值;
(2)求f(x)在区间[π,]上的最大值和最小值.
已知函数f(x)=(2cos2x-1)sin2x+cos4x.
(1)求f(x)的最小正周期及最大值;
(2)若α∈(,π),且f(α)=
,求α的值.
设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为(,
),求f(θ)的值;
(2)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
设函数f(x)=Asin(ωx+)(其中A>0,ω>0,-π<
≤π)在x=
处取得最大值2,其图象与x轴的相邻两个交点的距离为
.
(1)求f(x)的解析式;
(2)求函数g(x)=的值域.
设函数f(x)=sin2ωx+2sinωx·cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(,0),求函数f(x)的值域.