(本小题满分13分)已知数列, 满足条件:, .(Ⅰ)求证数列是等比数列,并求数列的通项公式;(Ⅱ)求数列的前项和,并求使得对任意都成立的正整数的最小值.
已知 (1)求函数的最小值; (2)对一切恒成立,求实数的取值范围; (3)证明:对一切,都有成立.
函数的图象记为E.过点作曲线E的切线,这样的切线有且仅有两条,求的值.
为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:(,为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小?并求出最小值.
证明:.
已知实数满足,证明:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号