(本小题满分12分)为了宣传今年10月在我是举办的“第十五届中国西部博览会”组委会举办了“西博会”知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如下图表所示:
(1)分别求出a,x的值;
(2)从地2,3,4组回答正确的人中用分层抽样的方法抽取6人,“西博会”组委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.
某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班
人,吴老师采用
、
两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取
名学生的成绩进行统计,作出的茎叶图如下:
记成绩不低于分者为“成绩优秀”.
(1)在乙班样本的个个体中,从不低于
分的成绩中随机抽取
个,记随机变量
为抽到“成绩优秀”的个数,求
的分布列及数学期望
;
(2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?
甲班(![]() |
乙班(![]() |
总计 |
|
成绩优秀 |
|||
成绩不优秀 |
|||
总计 |
设函数.
(1)求的定义域及最小正周期;
(2)求的单调递减区间.
已知点在抛物线
上,直线
(
,且
)与抛物线
,相交于
、
两点,直线
、
分别交直线
于点
、
.
(1)求的值;
(2)若,求直线
的方程;
(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
已知函数,
.
(1)若函数在其定义域上为增函数,求
的取值范围;
(2)当时,函数
在区间
上存在极值,求
的最大值.
(参考数值:自然对数的底数≈
).
已知等差数列的前
项和为
,且
、
成等比数列.
(1)求、
的值;
(2)若数列满足
,求数列
的前
项和
.