游客
题文

如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).

(1)求此抛物线的解析式
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

阅读以下材料:

苏格兰数学家纳皮尔 ( J Npler 1550 - 1617 年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉 ( Evler 1707 - 1783 年)才发现指数与对数之间的联系.

对数的定义:一般地,若 a x = N ( a > 0 a 1 ) ,那么 x 叫做以 a 为底 N 的对数,记作 x = log a N ,比如指数式 2 4 = 16 可以转化为对数式 4 = log 2 16 ,对数式 2 = log 3 9 可以转化为指数式 3 2 = 9

我们根据对数的定义可得到对数的一个性质:

log a ( M N ) = log a M + log a N ( a > 0 a 1 M > 0 N > 0 ) ,理由如下:

log a M = m log a N = n ,则 M = a m N = a n

M N = a m a n = a m + n ,由对数的定义得 m + n = log a ( M N )

m + n = log a M + log a N

log a ( M N ) = log a M + log a N

根据上述材料,结合你所学的知识,解答下列问题:

(1)填空:① log 2 32 =   ,② log 3 27 =   ,③ log 7 1 =   

(2)求证: log a M N = log a M - log a N ( a > 0 a 1 M > 0 N > 0 )

(3)拓展运用:计算 log 5 125 + log 5 6 - log 5 30

如图,在四边形 ABCD 中, ADC = B = 90 ° ,过点 D DE AB E ,若 DE = BE

(1)求证: DA = DC

(2)连接 AC DE 于点 F ,若 ADE = 30 ° AD = 6 ,求 DF 的长.

王刚同学在学习了解直角三角形及其应用的知识后,尝试根据所学知识测量河对岸大树 AB 的高度,他在点 C 处测得大树顶端 A 的仰角为 45 ° ,再从 C 点出发沿斜坡走 2 10 米到达斜坡上 D 点,在点 D 处测得树顶端 A 的仰角为 30 ° ,若斜坡 CF 的坡比为 i = 1 : 3 (点 E C B 在同一水平线上).

(1)求王刚同学从点 C 到点 D 的过程中上升的高度;

(2)求大树 AB 的高度(结果保留根号).

随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响.为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于2021年1月15日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》.为贯彻《通知》精神,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中 A 表示“一等奖”, B 表示“二等奖”, C 表示“三等奖”, D 表示“优秀奖” )

请你根据统计图中所提供的信息解答下列问题:

(1)获奖总人数为  人, m =   

(2)请将条形统计图补充完整;

(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请根据树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.

已知 x - y = 2 1 x - 1 y = 1 ,求 x 2 y - x y 2 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号