(本小题满分12分)广东某高中进行高中生歌唱比赛,在所有参赛成绩中随机抽取名学生的成绩,按成绩分组:第
组
,第
组
,第
组
,第
组
,第
组
得到的频率分布直方图如图所示.现在组委会决定在笔试成绩高的第
组中用分层抽样抽取
名学生进入第二轮面试.
(1)求组各应该抽取多少人进入第二轮面试;
(2)学校决定在(1)中抽取的这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有名学生被考官D面试,求
的分布列和数学期望.
广东理)设函数(其中
).
(1) 当时,求函数
的单调区间;
(2) 当时,求函数
在
上的最大值
.
数列{xn}满足x1=0,xn+1=-xn2+xn+c(n∈N*).
(1)证明:{xn}是递减数列的充分必要条件是c<0;
(2)求c的取值范围,使{xn}是递增数列.
在ABC中,sin(C-A)=1,sinB=
.
(1)求sinA的值;
(2)设AC=,求
ABC的面积.
△ABC的内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB。
(1)求B;
(2)若b=2,求△ABC面积的最大值。
△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(1)求B;
(2)若b=2,求△ABC面积的最大值。