(本小题满分15分)平面直角坐标系xOy中,已知以M为圆心的圆M经过点F1(0,-c),F2(0,c),A(c,0)三点,其中c>0.
(1)求圆M的标准方程(用含的式子表示);
(2)已知椭圆(其中
)的左、右顶点分别为D、B,圆M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.
已知向量与
互相垂直,其中
.
(Ⅰ)求和
的值;
(Ⅱ)若,
,求
的值.
设
(Ⅰ)若,求实数
的值;
(Ⅱ)求在
方向上的正射影的数量.
已知函数f (x) =
(1)试判断当的大小关系;
(2)试判断曲线和
是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与的大小,并写出判断过程.
设是各项都为正数的等比数列,
是等差数列,且
,
(1)求,
的通项公式;
(2)记的前
项和为
,求证:
;
(3)若均为正整数,且
记所有可能乘积
的和
,求证:
.
曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线
的短轴,并且是曲线
的长轴 . 直线
与曲线
交于A,D两点(A在D的左侧),与曲线
交于B,C两点(B在C的左侧).
(1)当=
,
时,求椭圆
的方程;
(2)若,求
的值.