(本小题满分12分)已知数列的前
项和
,数列
满足
,
(
).
(Ⅰ)求数列,
的通项公式;
(Ⅱ)记数列的前
项和为
,求
时的
的最大值.
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:
(1)∠FEB=∠CEB;
(2)EF2=AD·BC.
如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(1)证明:△ABE∽△ADC;
(2)若△ABC的面积S=AD·AE,求∠BAC的大小.
已知函数f(x)=sin +cos
,g(x)=2sin2
.
(1)若α是第一象限角,且f(α)=.求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.
已知函数f(x)=2sin ωx·cos ωx+2cos2ωx-
(其中ω>0),且函数f(x)的周期为π.
(1)求ω的值;
(2)将函数y=f(x)的图象向右平移个单位长度,再将所得图象各点的横坐标缩小到原来的
倍(纵坐标不变)得到函数y=g(x)的图象,求函数g(x)在
上的单调区间.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)当x∈时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.