某单位于“三•八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是邻队与旅行社导游收费标准的一段对话:
邻队:组团去“星星竹海”旅游每人收费是多少?
导游:如果人数不超过25人,人均旅游费用为100元.
邻队:超过25人怎样优惠呢?
导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.
该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元.
请你根 据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?
先化简分式,再从不等式组
的解集中取一个非负整数值代入,求原分式的值
提出问题:如图,在“儿童节”前夕,小明和小华分别获得一块分布均匀且形状为等腰梯形和直角梯形的蛋糕(AD∥BC),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将自己的这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).
背景介绍:这条分割直线既平分了梯形的面积,又平分了梯形的周长,我们称这条线为梯形的“等分积周线”.小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中作出这条“等分积周线”,从而平分蛋糕.
小华觉得小明的方法很好,所以模仿着在自己的蛋糕(图2)中画了一条直线EF分别交AD、BC于点E、F.你觉得小华会成功吗?如能成功,说出确定的方法;
如不能成功,请说明理由
通过上面的实践,你一定有了更深刻的认识.若图2中AD∥BC,∠A=90°,AD<BC,AB="4" cm,BC ="6" cm,CD= 5cm.请你找出梯形ABCD的所有“等分积周线”,并简要的说明确定的方法.
已知A(2,0),直线y=(2−)x−2交x轴于点F,y轴于点B,直线l∥AB且交 y轴于点C,交x轴于点D,点A关于直线l的对称点为A' ,连结AA',A'D。直线l从AB开始,以1个单位每秒的速度沿y轴正方向向上平移,设移动时间为t.求A'点的坐标(用t的代数式表示)
请猜想AB与AF长度的数量关系,并说明理由
过点C作直线AB的垂线交直线y=(2−)x−2于点E,以点C为圆心CE为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?
如图,已知:AC⊥AB,BD⊥AB,且AC=BE,AE=BD,求证:△CDE是等腰直角三角形;
证明:∵AC⊥AB,BD⊥AB∴∠CAE=∠DBE=90°
∵AC= BE,AE=BD∴△ACE≌△BED
∴CE=DE且∠ACE=∠BED
∵∠ACE+∠AEC=90°∴∠AEC+∠BED=90°
∴∠CED=90°∴△CED为等腰直角三角形
利用上题的解题思路解答下列问题:
在Rt△ABC中,∠C=90°,D,E分别为CB,CA延长线上的点,BE与AD的交点为P.若BD=AC,AE=CD,在下图中画出符合题意的图形,求出∠APE的度数;
若AC=BD,CD=AE,则∠APE=__________°
如图,直线y=2x+4与x轴、y轴分别交于A、B两点,把△OAB绕点O顺时针旋转90°得到△OCD.求经过A、B、D三点的抛物线的解析式
点P是第一象限内抛物线上一点,是否存在这样的点P,使得点P到直线CD的距离最大,若存在,请求出点P的坐标;若不存在,请说明理由.