为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
分组 |
频数 |
频率 |
60.5~70.5 |
0.16 |
|
70.5~80.5 |
10 |
|
80.5~90.5 |
18 |
0.36 |
90.5~100.5 |
||
合计 |
50 |
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…799, 试写出第二组第一位学生的编号;
(2)填充频率分布表的空格(将答案直接填在表格内) ,并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的约多少人?
设命题p:函数的定义域为R;命题q:不等式
对一切实数均成立。
(1)如果p是真命题,求实数的取值范围;
(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围。
已知函数.
⑴当时,①若
的图象与
的图象相切于点
,求
及
的值;
②在
上有解,求
的范围;
⑵当时,若
在
上恒成立,求
的取值范围.
如图,椭圆与椭圆
中心在原点,焦点均在
轴上,且离心率相同.椭圆
的长轴长为
,且椭圆
的左准线
被椭圆
截得的线段
长为
,已知点
是椭圆
上的一个动点.
⑴求椭圆与椭圆
的方程;
⑵设点为椭圆
的左顶点,点
为椭圆
的下顶点,若直线
刚好平分
,求点
的坐标;
⑶若点在椭圆
上,点
满足
,则直线
与直线
的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.
⑴试用半径表示出储油灌的容积
,并写出
的范围.
⑵当圆柱高与半径
的比为多少时,储油灌的容积
最大?