(本小题满分12分)如图,四棱锥S一ABCD中,已知AD∥BC,∠ASC=60°,∠BAD=135°,AD=DC=,SA=SC=SD=2.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)求二面角A - SB -C的余弦值.
已知函数在
处有极大值
.
(1)求的解析式;
(2)求的单调区间;
设函数,
(1)求函数的单调区间;
(2)若当时,不等式
恒成立,求实数
的取值范围;
(3)若关于的方程
在区间
上恰好有两个相异的实根,求实数
的取值范围.
如图,已知焦点在轴上的椭圆
经过点
,直线
交椭圆于不同的两点.
(1)求该椭圆的标准方程;
(2)求实数的取值范围;
(3)是否存在实数,使△
是以
为直角的直角三角形,若存在,求出
的值,若不存,请说明理由.
某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)的平方成正比.
已知商品单价降低2元时,一星期多卖出8件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,D是AC的中点。
(1)求证:平面
;
(2)求二面角的大小;
(3)求直线与平面
所成的角的正弦值.