某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
甲 |
95 |
82 |
88 |
81 |
93 |
79 |
84 |
78 |
乙 |
83 |
92 |
80 |
95 |
90 |
80 |
85 |
75 |
(1)请你计算这两组数据的平均数、中位数;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
(本题满分6分)
先化简,再求值:,其中
.
如图,在平面直角坐标系中,顶点为(,
)的抛物线交
轴于
点,交
轴于
,
两点(点
在点
的左侧). 已知
点坐标为(
,
).
(1)求此抛物线的解析式;
(2)过点作线段
的垂线交抛物线于点
, 如果以点
为圆心的圆与直线
相切,请判断抛物线的对称轴
与⊙
有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于
,
两点之间,问:当点
数学课上,李老师出示了这样一道题目:如图,正方形
的边长为
,
为边
延长线上的一点,
为
的中点,
的垂直平分线交边
于
,交边
的延长线于
.当
时,
与
的比值是多少?
经过思考,小明展示了一种正确的解题思路:过作直线平行于
交
,
分别于
,
,如图
,则可得:
,因为
,所以
.可求出
和
的值,进而可求得
与
的比值.
(1) 请按照小明的思路写出求解过程.
(2) 小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.