游客
题文

(本小题12分)叙述并证明余弦定理

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

【2015高考湖南,理20】已知抛物线的焦点也是椭圆的一个焦点,的公共弦的长为
(1)求的方程;
(2)过点的直线相交于两点,与相交于两点,且同向
(ⅰ)若,求直线的斜率
(ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形

【2015高考北京,理19】已知椭圆的离心率为,点和点都在椭圆上,直线轴于点
(Ⅰ)求椭圆的方程,并求点的坐标(用表示);
(Ⅱ)设为原点,点与点关于轴对称,直线轴于点.问:轴上是否存在点,使得?若存在,求点的坐标;若不存在,说明理由.

【2015高考新课标1,理20】在直角坐标系中,曲线C:y=与直线>0)交与M,N两点,
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.

【2015高考陕西,理20】(本小题满分12分)已知椭圆)的半焦距为,原点到经过两点的直线的距离为
(Ⅰ)求椭圆的离心率;
(Ⅱ)如图,是圆的一条直径,若椭圆经过两点,求椭圆
方程.

【2015高考湖北,理21】一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且.当栓子在滑槽AB内作往复运动时,带动转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.

(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线与两定直线分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号