(本小题满分10分)选修4-4:极坐标与参数方程选讲
已知曲线的极坐标方程是
,直线
的参数方程是
(
为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)设直线与
轴的交点是
,
是曲线
上一动点,求
的最大值.
(本小题满分13分)设函数,
,函数
的图象与
轴的交点在函数
的图象上,且在此点处两曲线有相同的切线.
(Ⅰ) 求、
的值;
(Ⅱ) 设定义在上的函数
的最大值为
,最小值为
,且
,求实数
的取值范围.
(本小题满分12分)已知数列的前
项和为
,
,
,
.
(Ⅰ) 求证:数列是等比数列;
(Ⅱ) 设数列的前
项和为
,
,点
在直线
上,若不等式
对于
恒成立,求实数
的最大值.
(本小题满分12分)如图,在多面体中,底面
是边长为
的的菱形,
,四边形
是矩形,平面
平面
,
,
和
分别是
和
的中点.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的大小.
(本小题满分12分)某鱼类养殖户在一个鱼池中养殖一种鱼,每季养殖成本为元,此鱼的市场价格和鱼池的产量均具有随机性,且互不影响,其具体情况如下表:
鱼池产量![]() |
![]() |
![]() |
概 率 |
![]() |
![]() |
鱼的市场价格(元/![]() |
![]() |
![]() |
概 率 |
![]() |
![]() |
(Ⅰ)设表示在这个鱼池养殖
季这种鱼的利润,求
的分布列和期望;
(Ⅱ)若在这个鱼池中连续季养殖这种鱼,求这
季中至少有
季的利润不少于
元的概率.
(本小题满分12分)已知函数,
.
(Ⅰ)若函数的图象关于直线
对称,求
的最小值;
(Ⅱ)若函数在
上有零点,求实数
的取值范围.