(本小题满分10分)选修4-4:极坐标与参数方程选讲
已知曲线的极坐标方程是
,直线
的参数方程是
(
为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)设直线与
轴的交点是
,
是曲线
上一动点,求
的最大值.
给定两个命题,:对任意实数
都有
恒成立;
:关于
的方程
有实数根;如果
与
中有且仅有一个为真命题,求实数
的取值范围
分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.
(1)矩形的对角线相等且互相平分;
(2)正偶数不是质数.
若F1、F2分别为双曲线 -=1下、上焦点,O为坐标原点,P在双曲线的下支上,点M在上准线上,且满足:,
(1)求此双曲线的离心率;
(2)若此双曲线过N(,2),求此双曲线的方程
(3)若过N(,2)的双曲线的虚轴端点分别B1,B2(B2在x轴正半轴上),点A、B在双曲线上,且,求
时,直线AB的方程.
如图,正四棱锥的高
,底边长
.求异面直线
和
之间的距离.
如图,正方形与等腰直角△ACB所在的平面互相垂直,且AC=BC=2,
, F、G分别是线段AE、BC的中点.求
与
所成的角的大小.