如图是一个半圆形湖面景点的平面示意图.已知为直径,且
km,
为圆心,
为圆周上靠近
的一点,
为圆周上靠近
的一点,且
∥
.现在准备从
经过
到
建造一条观光路线,其中
到
是圆弧
,
到
是线段
.设
,观光路线总长为
.
(1)求关于
的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.
已知在直角坐标系中,曲线
的参数方程为
为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点
为极点,
轴的非负半轴为极轴)中,曲线
的方程为
,
.
(Ⅰ)求曲线直角坐标方程,并说明方程表示的曲线类型;
(Ⅱ)若曲线、
交于A、B两点,定点
,求
的最大值.
如图,圆O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交圆O于N,点是线段
延长线上一点,连接PN,且满足
(Ⅰ)求证:是圆O的切线;
(Ⅱ)若圆O的半径为,OA=
OM,求MN的长.
已知函数.
(Ⅰ),使得函数
在
的切线斜率
,求实数
的取值范围;
(Ⅱ)求的最小值.
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-2,2].
(Ⅰ)求m的值;
(Ⅱ)若a,b,c∈R+,且a+b+c=m,不等式对任意实数
都成立,求
的取值范围.
已知在椭圆中,
分别为椭圆的左右焦点,直线
过椭圆
右焦点
,且与椭圆的交点为
(点
在第一象限),若
.
(Ⅰ)求椭圆的方程;
(Ⅱ)以为圆心的动圆与
轴分别交于两点A、B,延长
,分别交椭圆
于
两点,判断直线
的斜率是否为定值,并说明理由.