某班元旦迎新有奖活动中有一节目,参与者同时掷出三个各面分别标有数字1,2,3,4且质地均匀的小正四面体,规定:每位参与者只掷依次,选取着地一面的数字,如果掷出所取的三个数字都不相同,如“1、2、3”,“1、2、4”等情形为获奖.
(1)求参与者获奖的概率;
(2)获奖一次得到十元的奖品,否则得到纪念奖2元的奖品.求甲、乙两位参与者总的奖品金额恰为12元的概率.
(本小题满分14分)已知函数
,且
.
(1)判断
的奇偶性并说明理由;
(2)判断
在区间
上的单调性,并证明你的结论;
(3)若在区间
上,不等式
恒成立,试确定实数
的取值范围.
(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.
(本小题满分14分)已知集合A={
︱3<
≤7},B={x︱2<
<10},C={
︱
<
}
⑴ 求A∪B,(CuA)∩B
⑵ 若A∩C≠
,求a的取值范围
(本题满分13分)
已知函数
在
上是减函数,在
上是增函数,函数
在
上有三个零点.
(1)求
的值;
(2)若1是其中一个零点,求
的取值范围;
(3)若
,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。
(本题满分13分)
对于给定数列
,如果存在实常数
使得
对于任意
都成立,我们称数列
是 “M类数列”.
(1)若
,
,
,数列
、
是否为“M类数列”?若是,指出它对应的实常数
,若不是,请说明理由;
(2)证明:若数列
是“M类数列”,则数列
也是“M类数列”;
(3)若数列
满足
,
,
为常数.求数列
前
项的和.