某公司计划2015年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元。甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟。假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元。问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
(本小题满分10分)已知在半径为10的圆O中,弦AB的长为10。
(1)求弦AB所对的圆心角的大小。
(2)求所在的扇形弧长
及弧所在的弓形的面积S。
已知椭圆的离心率为
,且过点
(1)求椭圆的标准方程:
(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若
①求的最值:
②求证:四边形ABCD的面积为定值.
已知圆A:x2+y2-2x-2y-2=0.
(1)若直线l:ax+by-4=0平分圆A的周长,求原点O到直线l的距离的最大值;
(2)若圆B平分圆A的周长,圆心B在直线y=2x上,求符合条件且半径最小的圆B的方程.
如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线
对折,使得
,
为
的中点.若P为AC上的点,且满足
。
(Ⅰ)求证:
(Ⅱ)求三棱锥的体积;
平面内动点到定点
的距离比它到
轴的距离大
。
(1)求动点的轨迹
的方程;
(2)已知点A(3,2), 求的最小值及此时P点的坐标.