《科学》介绍了一种新技术——航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统。飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理“太空垃圾”等。该系统的工作原理可用物理学的基本定律来解释。
下图为飞缆系统的简化模型示意图,图中两个物体P,Q的质量分别为mP、mQ,柔性金属缆索长为l,外有绝缘层,系统在近地轨道作圆周运动,运动过程中Q距地面高为h。设缆索总保持指向地心,P的速度为vP。已知地球半径为R,地面的重力加速度为g。
(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B,方向垂直于纸面向外。设缆索中无电流,求缆索P、Q哪端电势高?两端的电势差多大?
(2)设缆索的电阻为R1,如果缆索两端物体P、Q通过周围的电离层放电形成电流,相应的电阻为R2,求缆索所受的安培力多大?
(3)求缆索对Q的拉力FQ多大?
如图所示,半径分别为R和r的甲、乙两个光滑的圆形轨道安置在同一竖直平面上,轨道之间有一条水平轨道CD相通,一小球以一定的速度先滑上甲轨道,通过动摩擦因数为μ的CD段,又滑上乙轨道,最后离开两圆轨道。若小球在两圆轨道的最高点对轨道压力都恰好为零,试求水平CD段的长度。
如图所示,物体在长1m的斜面顶端由静止下滑,然后进入由圆弧与斜面连接的水平面,(由斜面滑至平面时无能量损失)若物体与斜面及水平面的动摩擦因数均为0.5,斜面倾角为37°,取g=10m/s2,已知:sin37°=0.6,cos37°=0.8。求:
(1)物体到达斜面底端时的速度大小;
(2)物体能在水平面上滑行的距离。
如图,把一个质量为m的小球用细线悬挂起来,就成为一个摆,细线长为L(小球的半径忽略),最大偏角为θ,忽略空气阻力,重力加速度为g,求小球运动到最低点O时细线对小球的拉力。
质量m="3" kg的物体,在水平力F="6" N的作用下,在光滑的水平面上从静止开始运动,运动时间t="3" s,求:
(1)力F在t="3" s内对物体所做功的平均功率;
(2)在3 s末力F对物体做功的瞬时功率.
放在水平面上的一只木箱重400 N,木箱与地面间滑动摩擦因数μ=0.2,在水平推力作用下匀速移动10 m,则推力对木箱做功多少?,地面对木箱的支持力做功多少?,摩擦力对木箱做功多少?