已知椭圆
的离心率为
,且过点

(1)求椭圆的标准方程:
(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若
①求
的最值:
②求证:四边形ABCD的面积为定值.
已知函数
(1)求函数
在
上的最大值与最小值;
(2)若
时,函数
的图像恒在直线
上方,求实数
的取值范围;
(3)证明:当
时,
已知
是
的导函数,
,且函数
的图象过点
.
(1)求函数
的表达式;
(2)求函数
的单调区间和极值.
已知
,( a为常数,e为自然对数的底).
(1)
(2)
时取得极小值,试确定a的取值范围;
(3)在(2)的条件下,设
的极大值构成的函数
,将a换元为x,试判断
是否能与
(m为确定的常数)相切,并说明理由.
设函数
.
(1)若
在
时有极值,求实数
的值和
的极大值;
(2)若
在定义域上是增函数,求实数
的取值范围.
已知椭圆C的两焦点分别为
,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.