如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.
(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求DE的长;
(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长 .
已知x=-,求
的值.
(10分) 化简:
(1)(2)计算:
如图一,是一张放在平面直角坐标系中的矩形纸片,
为原点,点
在
轴的正半轴上,点
在
轴的正半轴上,
,
.
(1)在边上取一点
,将纸片沿
翻折,使点
落在
边上的点
处,求
两点的坐标;
(2)如图二,若上有一动点
(不与
重合)自
点沿
方向向
点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为
秒(
),过
点作
的平行线交
于点
,过点
作
的平行线交
于点
.求四边形
的面积
与时间
之间的函数关系式;当
取何值时,
有最大值?最大值是多少?
(3)在(2)的条件下,当为何值时,以
为顶点的三角形为等腰三角形,并求出相应的时刻点
的坐标.
某蒜苔生产基地喜获丰收收蒜苔200吨。经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式销售,计划每吨的售价及成本如下表:
销售方式 |
批发 |
零售 |
冷库储藏后销售 |
售价(元/吨) |
3000 |
4500 |
5500 |
成本(元/吨) |
700 |
1000 |
1200 |
若经过一段时间,蒜苔按计划全部售出后获得利润为(元)蒜苔
(吨),且零售是批发量的1/3.
(1)求与
之间的函数关系?
(2)由于受条件限制经冷库储藏的蒜苔最多80吨,求该生产基地计划全部售完蒜苔获得最大利润。
由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的,原来用60元买到的猪肉下调后可多买2斤. 4月中旬,经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感. 因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元.
(1)求4月初猪肉价格下调后每斤多少元?
(2)求5、6月份猪肉价格的月平均增长率.