已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.
(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离。(友情提醒:注意考虑P、Q的位置)
(·湖南常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为3,∠EAC=60°,求AD的长。
(·湖北孝感)如图,为⊙O的直径,
是
延长线上一点,
切⊙O于点
,
是⊙O的弦,
,垂足为
.
(1)求证:;
(2)过点作
交⊙O于点
,交
于点
,连接
.若
,
,求
的长.
(·湖北孝感) 如图,一条公路的转弯处是一段圆弧().
(1)用直尺和圆规作出所在圆的圆心
;(要求保留作图痕迹,不写作法)
(2)若的中点
到弦
的距离为
m,
m,求
所在圆的半径.
(·湖北襄阳,25题)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.
(1)求证:AC平分∠BAD;
(2)探究线段PB,AB之间的数量关系,并说明理由;
(3)若AD=3,求△ABC的面积.
(·湖北武汉,21题,分)(本题8分)如图,AB是⊙O的直径,∠ABT=45°,AT=AB
(1)求证:AT是⊙O的切线
(2)连接OT交⊙O于点C,连接AC,求tan∠TAC的值