(本小题满分14分)已知函数是奇函数,且满足
(1)求实数、
的值;
(2)试证明函数在区间
单调递减,在区间
单调递增;
(3)是否存在实数同时满足以下两个条件:
①不等式对
恒成立;②方程
在
上有解.
若存在,试求出实数的取值范围,若不存在,请说明理由.
已知a,b为正实数.
(1)求证:≥a+b;
(2)利用(1)的结论求函数y=(0<x<1)的最小值.
已知函数f(x)=|x+3|+|x-a|(a>0).
(1)当a=4时,已知f(x)=7,求x的取值范围;
(2)若f(x)≥6的解集为{x|x≤-4或x≥2},求a的值.
设函数f(x)=|x-1|+|x-2|.
(1)画出函数y=f(x)的图象;
(2)若不等式|a+b|+|a-b|≥|a|f(x)( a≠0,a,b∈R)恒成立,求实数x的取值范围.
设不等式|x-2|<a(a∈N*)的解集为A,且∈A,
∉A.
(1)求a的值;
(2)求函数f(x)=|x+a|+|x-2|的最小值.
已知a≥b>0,求证:2a3-b3≥2ab2-a2b.