(本小题满分14分)
已知A,B,C是△ABC的三个内角,向量,且
.
(1)求角A
(2)若,求
.
((本小题满分15分)
已知圆C过定点F,且与直线
相切,圆心C的轨迹为E,曲线E与直线
:
相
交于A、B两点。
(I)求曲线E的方程;
(II)在曲线E上是否存在与的取值无关的定点M,使得MA⊥MB?若存在,求出所有符合条件的定点M;若不存在,请说明理由。
(本小题满分14分)已知函数
(1)当时,求函数
的单调区间和极值;
(2)当时,若
,均有
,求实数
的取值范围;
(3)若,
,且
,试比较
与
的大小.
(本小题满分12分)
2010年推出一种新型家用轿车,购买时费用为14.4万元,每年应交付保险费.养路费及汽油费共0.7万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.
(1)设该辆轿车使用n年的总费用(包括购买费用.保险费.养路费.汽油费及维修费)为f(n),求f(n)的表达式;
(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
(本小题满分12分) 已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分别是线段AB.BC的中点,
(1)证明:PF⊥FD;
(2)在PA上找一点G,使得EG∥平面PFD;.
(3)若与平面
所成的角为
,求二面角
的余弦值.