如图,四棱锥P—ABCD中,为边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,
,E为PD点上一点,满足
(1)证明:平面ACE平面ABCD;
(2)求直线PD与平面ACE所成角正弦值的大小.
已知、
两个盒子中分别装有标记为
,
,
,
的大小相同的四个小球,甲从
盒中等可能地取出
个球,乙从
盒中等可能地取出
个球.
(1)用有序数对表示事件“甲抽到标号为
的小球,乙抽到标号为
的小球”,试写出所有可能的事件;
(2)甲、乙两人玩游戏,约定规则:若甲抽到的小球的标号比乙大,则甲胜;反之,则乙胜.你认为此规则是否公平?请说明理由.
已知函数在
处有极大值
.
(1)求的解析式;
(2)求的单调区间;
设函数,
(1)求函数的单调区间;
(2)若当时,不等式
恒成立,求实数
的取值范围;
(3)若关于的方程
在区间
上恰好有两个相异的实根,求实数
的取值范围.
如图,已知焦点在轴上的椭圆
经过点
,直线
交椭圆于不同的两点.
(1)求该椭圆的标准方程;
(2)求实数的取值范围;
(3)是否存在实数,使△
是以
为直角的直角三角形,若存在,求出
的值,若不存,请说明理由.
某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,
)的平方成正比.
已知商品单价降低2元时,一星期多卖出8件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?