游客
题文

(本小题满分13分)若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

如图,正方形所在平面与所在平面垂直,中点为.
(1)求证:
(2)求直线与平面所成角

已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与向量共线
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M为椭圆上任意一点,且,证明为定值

已知函数,若,求函数的单调区间与极值

如图,正四棱柱中,,点上且,点是线段的中点
(Ⅰ)证明:平面
(Ⅱ)求二面角的正切值;
(Ⅲ)求三棱锥的体积.

已知函数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)求函数在区间上的最大值和最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号