(本小题满分12分)已知四棱锥中,底面ABCD为直角梯形,BC//AD,,且PA=AB=BC=1,AD=2,平面ABCD,E为AB的中点.(Ⅰ)证明:;(Ⅱ)在线段PA上是否存在一点F,使EF//平面PCD,若存在,求的值.
在中,角所对的边分别为,且成等比数列. (1)若,,求的值; (2)求角的取值范围.
设为等比数列,为其前项和,已知. (1)求的通项公式; (2)求数列的前项和.
求以椭圆的焦点为焦点,且过点的双曲线的标准方程.
已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程; (2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.
抛物线,其准线方程为,过准线与轴的交点做直线交抛物线于两点. (1)若点为中点,求直线的方程; (2)设抛物线的焦点为,当时,求的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号