选修:极坐标与参数方程
在直角坐标系中,以
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.圆
的参数方程为
,
为参数,
.
(1)求圆心的一个极坐标;
(2)当为何值时,圆
上的点到直线
的最大距离为
.
如图所示,已知曲线与曲线
交于点O、A,直线
(0<t≤1)与曲线C1、C2分别相交于点D、B,连接OD、DA、AB。
(1)写出曲边四边形ABOD(阴影部分)的面积S与t的函数关系式;
(2)求函数在区间
上的最大值。
已知函数,
,若对任意的
都有
,求实数
的取值范围.
如图,酒杯的形状为倒立的圆锥,杯深8 cm .上口宽6cm , 水以20 cm3/s的流量倒入杯中,当水深为4 cm时,求水升高的瞬时变化率.
已知函数的图象经过点
,曲线在点
处的切线恰好与直线
垂直.
(1)求实数的值.
(2)若函数在区间
上单调递增,求
的取值范围.
物体A以速度在一直线上运动,在此直线上与物体A出发的同时,物体B在物体A的正前方5m处以
的速度与A同向运动,问两物体何时相遇?相遇时物体A的走过的路程是多少?(时间单位为:s,速度单位为:m/s)