教室内有5个学生,分别佩戴1号到5号的校徽,任选3人记录他们的校徽号码。
(1)求最小号码为2的概率;
(2)求三个号码中至多有一个偶数的概率。
(本题满分12分) 已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求的对称轴方程;
(Ⅲ)求在区间
上的最大值和最小值.
(本小题满分14分)
设数列的前
项和为
,已知
,
(
为常数,
,
),且
成等差数列.
(1)求的值;
(2)求数列的通项公式;
(3)若数列是首项为1,公比为
的等比数列,记
,
,
.证明:
.
(本小题满分14分)
已知的周长为
,且
,
的面积为
,
(1)求边的长;
(2)求的值.
(本小题满分14分)
某公司计划2010年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过180000元,甲、乙两个电视台的广告收费标准分别为元/分钟和
元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为3000元和2000元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少元?
(本小题满分14分)
已知等差数列的前
项和为
,
.
(1)求数列的通项公式;
(2)当为何值时,
取得最小值.