(本小题满分14分)某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是(单位:万元).现准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不超过
万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;
(Ⅱ)现有两个奖励函数模型:;
.试分析这两个函数模型是否符合公司要求.
已知命题p:任意x∈R,x2+1≥a都成立,命题q:方程表示双曲线.
(1)若命题p为真命题,求实数a的取值范围;
(2)若 “p且q”为真命题,求实数a的取值范围.
函数.
(1)当时,对任意
R,存在
R,使
,求实数
的取值范围;
(2)若对任意
恒成立,求实数
的取值范围.
如图,椭圆的离心率为
,
是其左右顶点,
是椭圆上位于
轴两侧的点(点
在
轴上方),且四边形
面积的最大值为4.
(1)求椭圆方程;
(2)设直线的斜率分别为
,若
,设△
与△
的面积分别为
,求
的最大值.
正方形的边长为2,
分别为边
的中点,
是线段
的中点,如图,把正方形沿
折起,设
.
(1)求证:无论取何值,
与
不可能垂直;
(2)设二面角的大小为
,当
时,求
的值.
箱中有3个黑球,6个白球,每个球被取到的概率相同,
箱中没有球.我们把从
箱中取1个球放入
箱中,然后在
箱中补上1个与取走的球完全相同的球,称为一次操作,这样进行三次操作.
(1)分别求箱中恰有1个、2个、3个白球的概率;
(2)从箱中一次取出2个球,记白球的个数为
,求
的分布列与数学期望.