判断下列二次函数的图象与x轴有无交点,若有请求出交点坐标;若无请说明理由.
(1)
(2)
如图是抛物线的一部分,且其过点(3,0),对称轴为直线x=1,则下列结论正确的有_________
①abc>0
②方程有两个不相等的实数根
③a-b+c=0
④当x>0时,y随x的增大而增大
⑤不等式的解为x>3
⑥3a+2c<0
探索证明如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD, BC,AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论.
(3)当AB和CD满足什么条件时,四边形EFGH是正方形.(直接写出结论,不必写证明过程)
应用题(10分 )某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?
如图正方形ABCD边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于点H.
(1)求证:BH⊥DE
(2)当BH垂直平分DE时,求CG的长度?请说明理由.(提示:要有辅助线哟?)