如图,正方形ABCD的边长为2,E是BC的中点,以点A为中心,把△ABE逆时针旋转90°,设点E的对应点为F.
(1)画出旋转后的三角形.
(2)在(1)的条件下,
①求EF的长;
②求点E经过的路径弧EF的长.
如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x秒.
(1)当x为何值时,PQ∥BC;
(2)是否存在某一时刻,使△APQ∽△CQB,若存在,求出此时AP的长;若不存在,请说理由;
(3)当时,求
的值.
大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量(件)与每件的销售价
(元)之间满足一次函数
.
(1)写出超市每天的销售利润(元)与每件的销售价x(元)之间的函数关系式;
(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?
(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.
(1)求证:BC 2=BD•BA;(2)判断DE与⊙O位置关系,并说明理由.
已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.
(1)求证:∠CDB=∠A;
(2)若BD=5,AD=12,求CD的长.
小丽和小静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.
(1)请用列表法或树状图表示出所有可能出现的游戏结果;
(2)求小丽胜出的概率.